Measure to compare true observed labels with predicted labels in binary classification tasks.
Arguments
- truth
(
factor()
)
True (observed) labels. Must have the exactly same two levels and the same length asresponse
.- response
(
factor()
)
Predicted response labels. Must have the exactly same two levels and the same length astruth
.- positive
(
character(1))
Name of the positive class.- ...
(
any
)
Additional arguments. Currently ignored.
Details
This measure counts the false negatives (type 2 error), i.e. the number of predictions indicating a negative class label while in fact it is positive. This is sometimes also called a "miss" or an "underestimation".